Superposition of Planar Voronoi Tessellations
نویسندگان
چکیده
We study the tessellation de ned as the intersection of two independent planar Poisson-Voronoi tessellations and derive the means of its main geometrical characteristics. For this intersection tessellation, we distinguish between six types of cells depending on whether they contain the nuclei of the two initial tessellations or not. The intensity and the mean area of each type of cell are computed either in closed form or via asymptotic expansions. The model can be used to represent the local zones of two competing telecommunication operators. Then the interconnection of two subscribers induces a speci c cost within each type of cell of the intersection tessellation associated with the two systems of local zones. OR/MS Subject Classi cation: Probability: stochastic model applications; Networks/graphs: stochastic; Communications; Transportation: network models. AMS 1991 Subject Classi cation Primary : 60D05, 90B12, 93A13 Secondary : 60G09, 60G10, 60K99, 90A25, 90A58 Key-words: Voronoi tessellation, Poisson process, Palm distribution, point process, communication network, interconnection cost. Postal address: INRIA-Ecole Normale Supérieure, Département de Mathématiques et d'Informatique, LIENS, 45 Rue d'Ulm, 75230 Paris, Cedex 05, France. E-mail: [email protected] y Postal address: CNET, 38 -40 Av. du General Leclerc, 92131 Issy Les Moulineaux, France. E-mail: [email protected] z Postal address: Statistics and Modelling Science dept., University of Strathclyde, Livingstone tower, 26 Richmond str., Glasgow G1 1XH, United Kingdom. E-mail: [email protected] Superposition de Pavages de Voronoï dans le Plan Résumé : Nous étudions le pavage obtenu par intersection de deux pavages de PoissonVoronoï du plan, dans le but d'obtenir des expressions en moyenne pour ses principales caractéristiques géometriques. Pour ce pavage intersection, nous distinguons six types de cellules suivant qu'elles contiennent ou non les noyaux des deux pavages de départ. L'intensité et la surface moyenne de chaque type de cellule sont calculées, soit de manière explicite, soit au moyen de développements asymptotiques. Ce modèle peut être utilisé pour représenter les zones locales de deux opérateurs de télécommunications en compétition sur le même territoire. Les coûts d'interconnexion entre les abonnés dépendent alors du type de cellule où ils se trouvent, les cellules étant précisément dé nies comme celles du pavage intersection associé à ces deux systèmes de zones locales. Mots-clés : pavage de Voronoï, processus de Poisson, distribution de Palm, processus ponctuel, réseau de communications, inter-connexion Superposition of Planar Voronoi Tessellations 3
منابع مشابه
Parallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations
A new algorithm, featuring overlapping domain decompositions, for the parallel construction of Delaunay and Voronoi tessellations is developed. Overlapping allows for the seamless stitching of the partial pieces of the global Delaunay tessellations constructed by individual processors. The algorithm is then modified, by the addition of stereographic projections, to handle the parallel construct...
متن کاملStatistical properties of planar Voronoi tessellations
I present a concise review of advances realized over the past three years on planar PoissonVoronoi tessellations. These encompass new analytic results, a new Monte Carlo method, and application to experimental data. PACS. PACS 02.50.-r Probability theory, stochastic processes, and statistics – PACS 45.70.Qj Pattern formation – PACS 87.18.-h Multicellular phenomena
متن کاملStochastic Geometry and Random Tessellations
Random tessellations form a very important field in stochastic geometry. They pose many interesting mathematical problems and have numerous important applications in many branches of natural sciences and engineering, as this volume shows. This contribution aims to present mathematical basic facts as well as statistical ideas for random tessellations of the d-dimensional Euclidean space R. Havin...
متن کاملImproved initialisation for centroidal Voronoi tessellation and optimal Delaunay triangulation
Centroidal Voronoi tessellations and optimal Delaunay triangulations can be approximated efficiently by non-linear optimisation algorithms. This paper demonstrates that the point distribution used to initialise the optimisation algorithms is important. Compared to conventional random initialisation, certain low-discrepancy point distributions help convergence towards more spatially regular resu...
متن کاملPercolation on random Johnson–Mehl tessellations and related models
We make use of the recent proof that the critical probability for percolation on random Voronoi tessellations is 1/2 to prove the corresponding result for random Johnson–Mehl tessellations, as well as for twodimensional slices of higher-dimensional Voronoi tessellations. Surprisingly, the proof is a little simpler for these more complicated models.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999